

DELHI PUBLIC SCHOOL GANDHINAGAR HOLIDAY HOMEWORK CLASS XII (SCIENCE) ACADEMIC SESSION 2022-23

ENGLISH

- 1. Prepare a one minute speech on either of the topics
- *Social media is a necessary evil.
- *Paperbacks vs E-books
- *Fear of Missing Out(FOMO): Is it real or not?
- * My favourite fictional character
- *Beauty lies in the eyes of the beholder
- * Why humans should colonize Mars
- *The best lesson I have learned
- *Animal testing should be banned

2. Prepare a draft for the essay in Annual Project.

The topic of the essay should be inspired by any of the following:-

- 1. A Book -- a book review to be written in complete detail about the author, writing style, critical analysis, etc.
- 2. Inspiration from an interview/ newspaper/ article/ talk/ speech
- 3. Inspiration from the text (NCERTtextbooks)

Some chapters and the topics which can be chosen:-

- Lost Spring slum children, child labour
- Indigo Ideologies of Mahatma Gandhi, struggle of Indian independence. condition of farmers
- Deep Water All we have to fear is fear itself
- My Mother at Sixty-six the condition of old parents, old age homes
- A Roadside Stand- the condition of slum children
- A Thing of Beauty nature, India's natural beauty
- Aunt Jennifer's Tigers patriarchy, female foeticide, patriarchy in India

PHYSICS

- 1. Journal Completion for Experiment Number-1 Ohm's Law.
- 2. Complete numericals notebook of chapter 1 and 2.

CHEMISTRY

- 1. Journal Completion for Experiment Number 1, 2 and 3.
- 2. Chemistry Investigatory Project File preparation and performing Investigation as per the topic assigned in the group.

BIOLOGY

- 1. Biology Investigatory Project to be performed and written.
- 2. Journal Completion for below mentioned experiments:
 - a . Exercise on controlled pollination
 - b. Study of adaptations of flowers for pollination

MATHEMATICS :

Choose the correct option (Q.1 to Q.10).

1.	If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$, then x equals to				
	(a) 3	(b) ±3	(c) ±6	(d) 6	
2.	If A is a square matrix such that $A^2 = A$, then $(I + A)^3 - 7A$ is equal to				
	(a) <i>A</i>	(b) <i>I</i> – <i>A</i>	(c) <i>I</i>	(d) 3 <i>A</i>	
3.	If A is a matrix of order $m \times n$ and B is a matrix such that AB' and $B'A$ are both defined, then order of matrix B is				
	(a) $m \times m$	(b) $n \times n$	(c) $n \times m$	(d) $m \times n$	
4.	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then for what value of α , A is an identity matrix?				
	(a) 0°	(b) 90°	(c) 45°	(d) 30°	
5.	If a matrix has 18 elements, how many possible orders it can have?				
	(a) 4	(b) 6	(c) 8	(d) 9	
6.	If $\Delta = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then the cofactor of the element a_{23} is				
7.	(a) -5 (b) 0(c) -7 (d) 7If A is a skew symmetric matrix of order 3×3 , then the value of $ A $ is				
	(a) -1	(b) 0	(c) 1	(d) 2	
8.	If <i>A</i> and <i>B</i> are square matrices of the same order 3, such that $ A = 2$ and $AB = 2I$, then $ B =$				
	(a) 2	(b) 9	(c) 8	(d) 4	
9.	The number of possible matrices of order 2×2 with each entry 0, 1 or 2 is				
	(a) 9	(b) 27	(c) 81	(d) 16	
10.	If the points (0, 0), (λ , 1) and (8, 1) are collinear, then λ =				
	(a) 2	(b) -8	(c) 8	(d) 0	
	Fill in the blanks (Q.11 to Q.15).				
11.	Let A be a matrix of order 3×3 and $k = 3$, then $ kA =$				
12.	If A is a symmetric matrix, then A^3 is a matrix.				
13.	If $\begin{bmatrix} 15 & x+y \\ 2 & y \end{bmatrix} = \begin{bmatrix} 15 & 8 \\ x-y & 3 \end{bmatrix}$, then the value of x is				
14.	If $\begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix} = 8$, then the value of x is				
	Page 1 of 4				

Page 1 of 4

15. If
$$A = \begin{bmatrix} 2 & 2 \\ -3 & 1 \\ 4 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 2 \\ 1 & 3 \\ 0 & 4 \end{bmatrix}$, such that $A + B + C$ is a zero matrix, then $C =$ _____

Answer the following questions (Q.16 to Q.20).

- 16. Evaluate: $\begin{vmatrix} \cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ \end{vmatrix}$
- 17. Find the value of x, if $\begin{bmatrix} 3x + y & -y \\ 2y x & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix}$
- 18. Write the value of the determinant: $\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix}$

19. If
$$\begin{bmatrix} a+b & 2\\ 5 & b \end{bmatrix} = \begin{bmatrix} 6 & 5\\ 2 & 2 \end{bmatrix}'$$
, then find a

20. Find the minor of the element of second row and the second column in the following determinant.

$$\begin{array}{cccc} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{array}$$

21. Write
$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

22. For what value of x, the matrix
$$\begin{bmatrix} 5-x & x+1\\ 2 & 4 \end{bmatrix}$$
 is singular?

23. Find the product matrix:
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$$
.

24. For a 2 × 2 matrix A = $[a_{ij}]$, whose elements are given by $a_{ij} = \frac{(i+2j)^2}{4}$, write the value of a_{21}

25. If
$$3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, then find the matrix A.

26. If
$$\begin{vmatrix} x+1 & x-1 \\ x-3 & x+2 \end{vmatrix} = \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix}$$
, then write the value of x.

27. For what value of x, is the matrix A = $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ a skew-symmetric matrix?

28. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then for any natural number *n*, find the value of $Det(A^n)$.

29. If matrix
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 and $A^2 = kA$, then find the value of k.

30. Write the value of the determinant
$$\begin{vmatrix} p & p+1 \\ p-1 & p \end{vmatrix}$$

Page 2 of 4

31. Use elementary column operation $C_2 \rightarrow C_2 - 2C_1$ in the matrix equation

$$\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

32. What positive value of x makes the following pair of determinants equal?

$$\begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix}, \begin{vmatrix} 16 & 3 \\ 5 & 2 \end{vmatrix}$$

- 33. If area of triangle is 35 sq. units with vertices (2, -6), (5, 4) and (k, 4), then find k.
- 34. Find the equation of a line joining the points (-1, 2) and (-3, 6), using determinants.
- 35. Show that the null matrix is both symmetric as well as skew symmetric.

36. If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, then find the value of $A^2 - 3A + 2I$.

37. For the matrices A and B, verify that (AB)' = B'A', if $A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$.

38. Find the inverse of the following matrix using elementary row operations:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

39. Using elementary column transformations, find the inverse of the matrix $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$.

- 40. A total amount of ₹7,000 is deposited in three different savings bank accounts with annual interest rates of 5%, 8% and 8 ¹/₂ % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% savings accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
- 42. Express the matrix $X = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
- 43. Show that all the diagonal elements of a skew symmetric matrix are zero.
- 44. Using properties of determinants, prove that $\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2$

45. Using the properties of determinants, prove that:

$$\begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{vmatrix} = -2$$

Page 3 of 4

46. Using properties of determinants, prove the following:

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$$

47. Using properties of determinants, prove the following:

$$\begin{vmatrix} a + x & y & z \\ x & a + y & z \\ x & y & a + z \end{vmatrix} = a^{2}(a + x + y + z)$$

48. Using properties of determinants, prove the following:

 $\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ a & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$

49. Using properties of determinants, solve the following for *x*:

 $\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$

50. Using properties of determinants, prove the following:

 $\begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2)$

COMPUTER SCIENCE

- 1. Completion of Practical File programs of lesson 1, 2 and 3.
- 2. Completion of Note book work of ch-1,2 and 3.

PHYSICAL EDUCATION

Write in Practical Book

** Procedure for Asanas, Benefits & Contraindication for **any two** Asanas for each lifestyle disease. [with your own photographs]

Obesity: Procedure, Benefits & Contraindications for Tadasana, Katichakrasana, Pavanmuktasana, Matsayasana, Halasana, Pachimottansana, Ardha – Matsyendrasana, Dhanurasana, Ushtrasana, Suryabedhan pranayama.

Diabetes: Procedure, Benefits & Contraindications for Katichakrasana, Pavanmuktasana, Bhujangasana, Shalabhasana, Dhanurasana, Supta-vajarasana, Paschimottanasana, Ardha-Mastendrasana, Mandukasana, Gomukasana, Yogmudra, Ushtrasana, Kapalabhati.

Asthma: Procedure, Benefits & Contraindications for Tadasana, Urdhwahastottansana, UttanMandukasana, Bhujangasana, Dhanurasana, Ushtrasana, Vakrasana, Kapalbhati, Gomukhasana Matsyaasana, Anuloma-Viloma.

Hypertension: Procedure, Benefits & Contraindications for Tadasana, Katichakransan, Uttanpadasana, Ardha Halasana, Sarala Matyasana, Gomukhasana, UttanMandukasana, Vakrasana, Bhujangasana, Makarasana, Shavasana, Nadishodhanapranayam, Sitlipranayam.

PSYCHOLOGY

- Practical File-Psychometric Tests: Report writing for test 1 & 2
 Conduct and write the entire case study.
 Complete unit end exercise of chapter 2